

(Autonomous Institution – UGC, Govt. of India)

Sponsored by CMR Educational Society

(Affiliated to JNTU, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – "A" Grade - ISO 9001:2015 Certified) Maisammaguda, Dhulapally (Post Via Hakimpet), Secunderabad – 500100, Telangana State, India. Contact Number: 040-23792146/64634237, E-Mail ID: <u>mrcet2004@gmail.com</u>, website: <u>www.mrcet.ac.in</u>

DEPARTMENT OF INFORMATION TECHNOLOGY II B.TECH II SEMESTER PREVIOUS QUESTION PAPERS

LIST OF SUBJECTS

CODE	NAME OF THE SUBJECT
R15A0508	DESIGN AND ANALYSIS OF ALGORITHMS
R15A0509	DATABASE MANAGEMENT SYSTEMS
R15A0506	FORMAL LANGUAGE AND AUTOMATA THEORY
R15A0507	JAVA PROGRAMMING
R15A0061	MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS
R15A0511	SOFTWARE ENGINEERING

Code No: R15A0508

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech II Semester Regular/Supplementary Examinations, April/May 2018 Design and analysis of Algorithms

(CSE & IT)

	Roll No										
--	---------	--	--	--	--	--	--	--	--	--	--

Time: 3 hours

Max. Marks: 75

Note: This question paper contains two parts A and B Part A is compulsory which carriers 25 marks and Answer all questions. Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries

10 marks.

	PART – A	(25 Marks)
1.	(a) General strategy of divide and conquer	2M
	(b) What are the performance analysis techniques of an algorithm?	3M
	(c) What is union and find?	2M
	(d) Explain bi connected components.	3M
	(e) What is job sequencing with deadlines?	2M
	(f) What is greedy method?	3M
	(g) What is a graph coloring problem?	2M
	(h) What is general backtracking method?	3M
	(i) What is the difference between NP hard and NP Complete problem?	2M
	(j) List the advantages of dynamic programming.	3M
	PART – B	(50 Marks)
	<u>SECTION – I</u>	
2.	Explain in detail about asymptotic notations.	10M
	(OR)	
3.	Explain Merge sort technique. Give the time complexity of merge sort.	10M
	<u>SECTION – II</u>	
4.	Explain the following graph traversal	
	(a) Depth First search	5M
	(b) Breath First search.	5M
	(OR)	
5.	Write short notes on	
	a) Game trees	5M
	b) AND/OR graphs	5M

SECTION – III

6. How do you construct a minimum Spanning tree using kruskals algorithm explain? List any two applications. [10M]

(OR)	
7. State dynamic programming. Explain with one application.	10M
<u>SECTION – IV</u>	
8. Explain the Travelling salesmen problem using Branch and bound technique. (OR)	10 M
9. Give the solution to the 8 queen's problems using backtracking.	10M
<u>SECTION – V</u>	
10. Discuss in detail about the class P, NP, NP-hard and NP-complete prexamples for each class.	oblems. Give 10M

(OR)

11. (a) Write and explain the Cooks theorem.	5M
(b) What is non deterministic algorithm explain.	5M

(\mathbf{OP})

Time: 3 hours

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech II Semester Regular/Supplementary Examinations, April/May 2018

Database Management Systems

(/	(CSE	&	IT)
-----	------	---	-----

Roll No

Note: This question paper contains two parts A and B

Part A is compulsory which carriers 25 marks and Answer all questions.

Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks.

**** PART – A

1.(a) Differentiate between conceptual data independence and physical data independence.[2M](b) Specify two kinds of constraints with respect to 'ISA' hierarchies/relationship. [3M]

- (c) What is the difference between UNIOUE key and Primary Key in relational Model? [2M]
- (d) Discuss the notations in ER-Diagram[3M]
- (e) What is foreign key? [2M]
- (f) What is the difference between UNION and UNION ALL in SQL?[3M]
- (g) Define the term ACID properties.[2M]
- (h) What are two types of lock-based protocols?[3M]
- (i) What is called a query –execution engine?[2M]

(j)Compare sequential access file versus random access files.[3M]

PART – B

(50 Marks)

[4M]

<u>SECTION – I</u>

2.(a) What are the Different types of Data Models? Explain about Relational Model? [5M] (b)Why would you choose a database system instead of file system? [5M]

(**OR**)

3. What is DBMS? Explain architecture of DBMS with diagram. [10M]

SECTION – II

4(a). Consider the following tables:

Employee (Emp_no, Name, Emp_city)

Company (Emp_no, Company_name, Salary)

i. Write a SQL query to display employee name, employee city ,company name and salary of all the employees whose salary >10000

ii. Write a query to display all the employees working in 'XYZ' company.

(b) Explain various DML commands with neat syntax. [6M]

<u>(OR)</u>

5.(a) What is view in SQL? How is it defined? [5M]

(b) .What are aggregate functions? And list the aggregate functions supported by SQL? [5M]

<u>SECTION – III</u>

6.(a) Why normalization is required? And explain different types of normal forms[5M]

(b) Define BCNF .How does it differ from 3NF [5M]

Max. Marks: 75

(25 Marks)

(OR)

7(a) .What is meant by lossless-join decomposition? [5M](b). Explain 2NF and 3NF in detail. [5M]

SECTION - IV

8. (a) Explain Time stamp-Based Concurrency Control protocol [5M](b) Explain remote backup system [5M]

(OR)

9. (a) Explain about validation based protocols. [5M] (b Discuss on strict, two-phase locking protocol [5M]

.

SECTION – V

10. Explain static and dynamic Hashing Techniques? [10M]

(OR)

11. Explain in detail insertion methods B+ tree index files with example.[10M]

(Autonomous Institution – UGC, Govt. of India)

II B.Tech II Semester Regular/Supplementary Examinations, April/May 2018 Formal Language and Automata Theory

	((CSE	& I'	T)			
Roll No							

Time: 3 hours

Note: This question paper contains two parts A and B

Part A is compulsory which carriers 25 marks and Answer all questions. Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks.

	PART – A	(25 Marks)
1.	(a) Define NFA.	(2M)
	(b) List out the applications of a Finite Automata.	(3M)
	(c) Define Regular Expression with an example.	(2M)
	(d) List out the closure properties of regular sets.	(3M)
	(e) State Pumping lemma for CFL's.	(2M)
	(f) Define a right linear grammar with an example.	(3M)
	(g) What do you understand by the term LBA?	(2M)
	(h) Show the acceptance of PDA by empty stack.	(3M)
	(i) Define PCP and MPCP.	(2M)
	(j) Define turning machine. How a TM accepts a language?	(3M)
	PART – B	(50 Marks)

<u>SECTION – I</u>

- 2. a) Construct a DFA equivalent to the regular expression 10+(0+11)0*11+00 (5M)
 b) Explain Chomsky Hierarchy. (5M)
 - (**OR**)
 - **3.** a) Design a DFA for the following language, also give the transition diagram and the regular expression.

$$L = \{ 0^m 1^n \mid m \ge 0 \text{ and } n \ge 1 \}$$

(5M)

b) Find DFA equivalent to NFA, described by the following state transition table. I.S=p, F.S= $\{q, s\}$ (5M)

Q	0	1
→ p	{q, s}	q
q	r	{q, r}
r	S	р
s	-	р

Max. Marks: 75

		<u>SECTION – II</u>	
4.	Co	onsider the following regular expression and construct the finite automator	ı
		a) $a + b$ b) $(a + b)^*$	
		c) $a(a + b)^*$ d) $a(a + b)*b$ e) b+ba	(10M)
		(OR)	
	5.	a) Convert the R.E. = $(a+b)^*$ into DFA	(5M)
		b) Explain the steps to construct a FA for a given regular expression.	(5M)
		<u>SECTION – III</u>	
	6.	a) Construct right-linear and left-linear grammars for the following regu	lar expression.
		$A_{0} \rightarrow aA1, A1 \rightarrow bA1, A1 \rightarrow a, A1 \rightarrow bA0$	(5M)
	1	b) Construct the left-most and right-most derivations and parse trees for th	e following
		grammar	
		$S \rightarrow aB \mid bA$	
		$A \rightarrow aS \mid bAA \mid a$	
		$B \rightarrow bS \mid aBB \mid b$ which accepts the string "aaabbabbba".	(5M)
		(OR)	
	7.	a) Construct a DFA for the following regular grammar	
		$S \rightarrow Aa$	
		$A \rightarrow Sb \mid Ab \mid \epsilon$	(5M)
		b) Convert the given grammar to GNF.	
		$S \rightarrow AB$	
		$A \rightarrow BS \mid b$	
		$B \rightarrow SA \mid a$	(5M)
		<u>SECTION – IV</u>	
8.	a)	Obtain the PDA accept the language $L = \{w \mid w \in (a, b)^* \text{ and } n_a(w) > n_b(w) \in (a, b)^* \}$	w)} i.e., number
	of	f a's in 'w' is greater than number of b's in 'w'.	(5M)
	b)	Define Push Down Automata. Explain how CFG is accepted by PDA.	(5M)
		(OR)	
	9.	a) Design a PDA which accepts strings of the language $\{0^n1^n \mid n \ge 1\}$	(5M)
		b) Convert the following grammar to PDA.	
		$S \rightarrow aAD$	
		$A \rightarrow aB \mid bAB$	(
		$B \rightarrow bBB \mid a$	(5M)

SECTION – V10. a) Explain about different types of Turing machines. (5M) b) Find whether the post correspondence problem $P = \{(10, 101), (011, 11), (101, 011)\}$ has a match. Give the solution. (5M)

(OR)

11. a) Construct LR(0) items for the grammar given, find its equivalent DFA. Check the parsing by taking a suitable derived string. $S^1 \rightarrow S$

$S^1 \rightarrow S$	
$S \rightarrow AS \mid \epsilon$	
$A \rightarrow aA \mid b$	(6M)
b) Explain the Churches' hypothesis.	(4M)

(Autonomous Institution – UGC, Govt. of India)

II B.Tech II Semester Regular/Supplementary Examinations, April/May 2018

Java Programming

Time: 3 hours

Note: This question paper contains two parts A and B

Part A is compulsory which carriers 25 marks and Answer all questions.

Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks.

PART – A

- 1. (a)Distinguish between C++ and JAVA [2M].
- (b) What is nested class in java? [3M]
- (c) How do java programs maintain platform independency with the help of JVM? [2M]
- (d) Write short note on Interface. [3M]
- (e) What is CLASSPATH ? [2M]
- (f) Explain the life cycle of an applet. [3M]
- (g) What is synchronization? [2M]
- (h) Differentiate AWTs and swings [3M]
- (i) Write short notes this keyword?[2M]
- (j) Explain the life cycle of thread [3M]

PART – B <u>SECTION – I</u>

(50 Marks)

2. A) How do java programs maintain platform independency with the help of JVM? [5M]B) Explain the constructor over loading with example? [5M]

(OR)

3. A) What are the benefits of Object Oriented Programming? [5M]B) Explain the access specifiers of java language with examples. [5M]

SECTION – II

4. Define Inheritance? What are the different types of Inheritances? Explain. [10M]

(OR)

5. Explain the concepts of encapsulation, inheritance, dynamic binding and message communication using an example(s). [10M]

<u>SECTION – III</u>

6. What are different types of exceptions in Java? Why do you need to catch an exception in Java? Explain. [10M]

(OR)

7. What is the difference between multiprocessing and multithreading? What is to be done to implement these in a program? [10M]

Max. Marks: 75

(25 Marks)

SECTION - IV

8. Write a program that reads from the user the name of a text file, counts the word frequencies of all words in the file, and outputs a list of words and their frequency. [10M]

(OR)

9. Discuss the four types of JDBC drivers with suitable diagrams. [10M]

<u>SECTION – V</u>

 Develop an applet program to change the foreground and background colors and to display the message in the order in which the init(), start() and paint() methods are called.
 [10M]

(OR)

11. Explain briefly any four layout managers in Java with examples. [10M]

(Autonomous Institution – UGC, Govt. of India)

II B.Tech II Semester Regular/Supplementary Examinations, April/May 2018

Managerial Economics and Financial Analysis (CSF & IT)

						(C)	Eal	1)								
			Roll I	No												
Ti	me: 3	hours										N	/Iax.	Maı	rks: 75	
No	ote: T	his ques	tion paper contains two parts A and B													
	Pa	art A is	compulsory	which	carri	iers 25	marks	and	Ansy	wer a	all ai	iestio	ons.			
	Part B	Consist	s of 5 SEC	TIONS	(One	e SEC	TION	for ea	ach T	INIT	"). A	nswe	er FI	VE C	Duestion	IS.
	Cho	osing O	NE Questio	on i	from	each S	SECTI	ON a	nd ea	ach (Ques	tion	carri	es 10) marks	~,
		U				PAR	T – A				-		(2	5 Ma	arks)	
1.	(a) D	ifferenti	iate betwee	n micro	econ	omics	and m	acroe	econo	omic	s. (2	M)				
	(b) St	tate the	various exc	eptions	to la	w of d	lemand	l. (3N	A)							
	(c) Di	iscuss al	bout Cobb-	Dougla	s pro	ductio	n func	tion.	(2M))						
	(d) W	hat is Is	soquant and	1 Isocos	st?. (2	5M)										
	(e) D	enne m volain p	onopoly. (2 rice discrir	(IVI)) (3N	A)										
	$(\mathbf{r}) \mathbf{L}$	/hat do	vou underst	and by	trial	halanc	e? (2N	/ D								
	(h) D) Define Market penetration?. (3M)				-)										
	(i) W	hat is n	neant by Pa	yback 1	netho	d? (21	M)									
	(j) D	efine ca	pital budge	ting. (3	M)											
						PAR	T – B	_					(5	0 Ma	arks)	
2.	Defin exam	e Mar	nagerial E M)	conom	ics?	<u>SEC</u> Expla	<u>TION</u> ain it	<u>– I</u> s na	ature	ar	nd s	scope	e w	vith	approp	oriate
	(OR)															
3.	Expla	in the d	ifferent deg	grees of	price	e elasti	icity w	ith su	iitabl	le di	agrai	ms. (10M	[)		
						<u>SEC</u>	ΓION ·	– II								
4.	Discu	iss abou	t economie	s and d	iseco	nomie	s of sc	ale .	(10M)	1)						
5	Dofin	a braak	avon noint	Dicou	aa h r	ole ou	(OR)	lucia	with	0.00	vom	nla	(10)	1)		
5.	Denn	e bieak-	-even point	. Discu	55 010	SECT	un ana 'ION -	- III	with	ane	xam	pie.	(101)	(1)		
6.	State	the me	rits and der	nerits o	f sole	e tradi	ng and	partr	nersh	ip of	bus	iness	. (10)M)		
							(OR)	1		1				,		
7.	Expla	in how	a firm atta	ins equ	ilibri	um in	the she	ort ru	ın an	d in	the	long	run	unde	r condi	tions
	of per	fect cor	npetition. (10M)												
0	Dofin		unt Illuste	oto diff	arant	<u>SECI</u>	<u>- 10N -</u>	<u>- IV</u>	nlaa	of /	000	unto	(D 11		f Dahit	and
0.	Credi	f (10N)	unit. musita ()	ate uni	erem	types	and F	mer	pies	01 F	1000	unts	(Ku	ies o	I Debit	anu
	citui	(1010	1)				(OR)									
9.	From	the fol	lowing info	ormation	n, cal	culate	NPV a	& De	ples of Accounts (Rules of Debit and <u>cide the project criteria.</u>							
	Year		Proje	ect-A		Proj	ect-B									
	1		9000	0		160	000									
	2		1600	00		120	000									
	3		1200	00		500	00									
	4 The	and of	1/000		50	1/00	00	feat		10.0	/					
	1 ne	cost of	me project	15 KS. 2	, 50,0	OUU, di			OF 1S	10 %	0					

<u>SECTION – V</u>

- 10. Discuss different types of Ratios. (10M)
 - (OR)
- 11. Define Ratio Analysis. Describe the advantages/significance and limitations of Ratio Analysis(10M)

- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.

(Autonomous Institution – UGC, Govt. of India)

II B.Tech II Semester Regular/Supplementary Examinations, April/May 2018

Software Engineering

(11)												
Roll No												

Time: 3 hours

Note: This question paper contains two parts A and B

Part A is compulsory which carriers 25 marks and Answer all questions. Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE

Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks.

PART - A

(25 Marks)

- 1. (a) List out the Software myths (2M)
 - (b) Explain about the process framework (3M)
 - (c) Discuss about the software requirement specification. (2M)
 - (d) Illustrate the Requirements elicitation (3M)
 - (e) Explain about the golden rules of user interface design. (2M)
 - (f) Explain about Design evaluation. (3M)
 - (g)Discuss about the art of Debugging. (2M)
 - (h) Explain about the Software Quality. (3M)
 - (i) Discuss about the Formal technical reviews. (2M)
 - (j) Explain about the Statistical Software quality Assurance. (3M)

PART - B(50 Marks) **SECTION - I**

2. Write short notes on Process patterns, process assessment. (10M)

(\mathbf{OR})

3. Discuss about the waterfall model with figure. (10M)

SECTION – II

- 4. Write short notes on Context Models and Behavioral models. (10M)
 - (OR)
- 5. Explain about the Data models and Object models. (10M)

SECTION – III

6. Explain about the various design concepts. (10M)

(OR)

7. Explain about the User interface analysis and design. (10M)

SECTION – IV

- 8. Discuss about the Metrics for testing and source code (10M) (OR)
- 9. Explain about risk management process. (10M)

SECTION - V

10.Explain about the Software reliability. (10M)

(OR)

11.Discuss about the ISO 9000 quality standards. (10M)

Max. Marks: 75

R15